LILM-guided Formal Verification Coupled with
Mutation Testing

Muhammad Hassan'2, Sallar Ahmadi-Pour!, Khushboo Qayyqu, Chandan Kumar Jha!, Rolf Drechsler!:2
Unstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{hassan, sallar, khushboo, chajha, drechsler} @uni-bremen.de

Abstract—The increasing complexity of modern hardware de-
signs poses significant challenges for design verification, particu-
larly defining and verifying properties and invariants manually.
Recently, Large Language Models (LLMs) such has GPT-4 have
been explored to generate these properties. However, assessing
the quality of these LLM generated properties is still lacking.
In this paper, we introduce a EEM-=guided formalvverification
methodology combined with mutation testing for creating and
assessing invariants for Design Under Verification (DUV). Utilizing
OpenAD’s GPT-4, we automate the generation of invariants and
formal models from design specifications and Verilog behavioral
models, respectively. We further enhance this approach with
mutation testing to validate the quality of the invariants. We
use a 27-channel interrupt controller (C432) from ISCAS-85
benchmarks as a complex case-study to showcase the methodology.

I. INTRODUCTION

The complexity of the modern hardware designs has in-
creased significantly. Consequently, the task of formal verifi-
cation has become increasingly daunting [1], [2]. As hardware
complexity continues to grow, traditional verification methods
struggle to keep pace with it, leading to increased development
time and potential for errors. This necessitates a rigorous
verification process, where properties and invariants must be
accurately defined to ensure system correctness. However,
manually writing these properties for complex designs is not
only labor-intensive but also prone to errors, making the ver-
ification process cumbersome and less reliable. The challenge
lies not only in the complexity but also in ensuring that these
designs are robust against a wide range of potential design or
implementation errors.

Recent advances in Artificial Intelligence (Al), particularly
in the domain of Large Language Models (LLMs), offer new
avenues for addressing these challenges [3]. LLMs, such as
OpenAI’'s GPT-4, have shown remarkable capabilities in under-
standing and processing natural language, making them well-
suited for interpreting and translating hardware specifications
into SystemVerilog Assertions (SVA) [4]-[6], System-on-Chip
(SOC) security properties [7]-[9], and stimuli generation [10].
However, the dynamic and often unpredictable nature of LLM-
generated outputs (e.g., properties) poses a unique challenge
in consistently evaluating their effectiveness across different
hardware specifications.

In this regard, mutation testing emerges as a viable solution
to this problem. By introducing controlled modifications to the
hardware design, mutation testing allows for a comprehensive

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project ECXL under contract no.
01IW22002, the project PaSVer under contract no. 16MEO0855, and the project
SASPIT under contract no. 16KIS1852K.

STAGE 1 Python errors feeding back to LLM for correction

Specifications
Design l, um
Specs Inst 1 . Invariants
*Prompts —> Invariants (NL)} Z3p

STAGE 2

Functionality
*Prompts 1 list *Prompts l
Hierarchy LLM Z3PyISMT LLM Python || LLM
Parse

Inst2 Model Inst3 Env Inst 5

Python errors feeding back to LLM for correctipn

STAGE T *Prompts 1

Yosys —> Sm— DIFF —> e
Inst 4

Mutants

Fig. 1. Overview of LLM-guided Methodology

assessment of the quality and thoroughness of the verification
process [11]. This method provides quantitative metrics for
evaluating the effectiveness of LLMs in generating accurate
and robust verification models. Consequently, providing higher
confidence in using LLM-generated properties.

In this paper, we propose a LLM-guided formal verification
methodology to generate invariants for Design Under Verifi-
cation (DUV). An invariant is a condition or property that is
consistently maintained as true throughout the execution of a
system. In addition to invariants, we couple the LLM with
mutation testing to perform qualitative analysis of the LLM-
generated invariants. The methodology leverages OpenAl’s
GPT-4 as a key component, to automatically and systemati-
cally generate formal properties from design specifications and
formal model from the Verilog behavioral model. We go one
step further and integrate mutation testing to ensure that the
generated properties are of high quality. The experiments were
carried out on ISCAS-85 C432 27-channel interrupt controller
[12], [13] as it shows the complexity in terms of hierarchy and
functionality.

II. LLM-GUIDED FORMAL VERIFICATION

In this section, we provide an overview of the proposed
LLM-guided verification methodology (see Fig. 1) coupled
withemutationntesting® The methodology is divided into three
stages, 1) generation of invariants, 2) generation of the formal
model, and 3) qualitative analysis of invariants. In stage 1,
the design specification is given as input to the LLM-instl,
where three unique prompts are given as input, one at a time.
First, the LLM is requested to create a list of specifications
from the design specifications. The purpose of this prompt
is twofold; 1) clarity in what LLM has extracted, and 2)


Mahesh Sadupalli

Mahesh Sadupalli

Mahesh Sadupalli


provide structure. This prompt provides guidance to the LLM.
We have observed that EEMs»work significantlyrbetterswith
structured data; than unstructured data: Afterwards, the LLM
is requested to cross-check the specification it has listed against
the provided specifications and add the missing specifications.
This step provides an additional layer to ensure nothing is
missed out. Finally, the LLM is requested to create a list
of invariants in natural language and Z3Py representation for
formal verification.

In stage 2, first the DUV is parsed to extract the hierarchical
modules. With complex designs, the LLM responds with ex-
cuses and tries to guide the user with model creation instead
of creating it. However, our goal is to prompt LLM to generate
the formal model. Hence, we start creating the formal model
in a bottom-up manner, i.e., starting from the lowest hierarchy
in DUV to the top module. For each sub-module, the LLM-
inst2 generates a functionality list and then a Z3Py model. At
this point, LLM-inst3 is requested to combine the invariants
from stage 1 into the model from stage 2. Please note, the
invariants are written in two formats, 1) consistency check, 2)
bug finding (negation of original invariant). The complete DUV
Z3Py model with invariants is given to the Z3 SMT solver in
a Python environment. If the Z3 solver returns SAT, everything
is fine. In case it returns UNSAT with a counter example, it
is given as input to the LLM-inst5, requesting it to create a
testcase for Verilog testbench.

In stage 3, we perform a qualitative analysis of the invariants
generated in stage 1. In particular, we use mutation testing to
check if the invariants are of high quality or not. The DUV is
given as input to Yosys which generates several mutants. Since,
each mutant has only one mutation inserted, we take difference
(Diff) between the golden DUV and the mutant to extract
that particular changed line. Once extracted, we ask the LLM-
inst4 to convert that particular line to Z3Py representation.
Afterwards, it is merged in the original model and given to
Z3 solver. All mutants are checked in this manner. Finally,
based on the number of mutants detected, a mutation score is
calculated to assess the quality of the generated invariants.

In the next section, we discuss a case-study to show the
efficacy of our LLM-guided methodology.

ITII. CASE-STUDY: 27-CHANNEL INTERRUPT CONTROLLER

In this section we present a case study to demonstrate
the LLM-guided formal properties generation and assessment
methodology. We consider the ISCAS-85 C432 27-channel
interrupt controller [12], [13] which has been modeled as a Ver-
ilog behavioral model. It comprises of five sub-modules, Pri-
orityA, PriorityB, PriorityC, EncodeChan, and DecodeChan.
As shown in Fig. 1, we give the C432 circuit to Yosys and
generate 20 mutants. Each mutant has a distinct mutation, i.e.,
no two mutants are the same. We generated 2 invariants from
the given specifications to verify the correct priority order
among buses as well as correct priority order within bits of
a bus. The original DUV Z3Py model executed successfully
with the invariants, i.e., the invariants were satisfied for both
consistency and bug finding. However, the invariants failed
when mutants were executed. Out of 20 mutants, all were
detected successfully resulting in a mutation score of 1. As
an additional step to verify our own results, we also performed
equivalence checking of DUV Z3Py model and mutants. The

Z3 solver reported UNSAT for all mutants. For all the cases
where the invariants failed, the reported counter example was
added as a test-case to the testbench.

IV. INSIGHTS INTO LLM BEHAVIOR

While developing our methodology, we gained several in-

sights (in addition to what is already mentioned in the paper):

o We observed that if the counter example is given as input

to LLM to patch the complex circuit, it was unable to do

so. On the contrary, the LLM was able to patch a simple
circuit, e.g., Full-adder.

o Furthermore, we also observed that positive feedback to
LLM improves the LLM output, i.e., acknowledging the
result by saying thank you and requesting a task with
please.

o Inside the prompt, if a monetary incentive, e.g., $100 tip
is promised, the quality of results improve. The higher the
incentive the better the results.

o The LLMs work very well with structured data. Hence,
we always requested the LLM instances to create lists.

o The LLMs find it very difficult to extract meaning from the
Verilog netlist and structural gate-level models. However,
behavioral models work very well.

V. CONCLUSION

In this paper, we proposed a LLM-guided formal verifica-
tion methodology to generate invariants as well as evaluate
their quality. At the heart of the methodology lies the LLM
which performs a set of tasks as requested by the prompts.
Our findings demonstrated that LLMs, particularly OpenAl’s
GPT-4, can effectively automate the generation of invariants
from hardware design specifications. Coupling it with mutation
testing as a method for qualitative analysis further strengthens
our methodology.

Our research also uncovered some challenges, LLM’s are
not equally good at patching the complex code only using
counter-example. Secondly, the context window size for LLMs
is limited. Hence, techniques like slicing of the Verilog code
needs to be incorporated. The slicing criteria could be based on
data-flow, hierarchy or some certain functionality. In addition to
aforementioned challenges, in future we plan to also automate
the methodology using frameworks for automated interaction
with LLM instances.

REFERENCES

[1] R. Drechsler, Advanced formal verification. ~ Springer, 2004.

2] , Formal verification of circuits. Springer Science & Business Media, 2013.

[3] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat: Challenges and opportunities in
conversational hardware design,” arXiv preprint arXiv:2305.13243, 2023.

[4] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and J. Rajendran, “Llm-
assisted generation of hardware assertions,” arXiv preprint arXiv:2306.14027, 2023.

[5] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “From rtl to sva: LIm-assisted generation
of formal verification testbenches,” arXiv preprint arXiv:2309.09437, 2023.

[6] C. Sun, C. Hahn, and C. Trippel, “Towards improving verification productivity with circuit-
aware translation of natural language to systemverilog assertions,” in First International
Workshop on Deep Learning-aided Verification, 2023.

[7]1 D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and F. Farahmandi, “LIm
for soc security: A paradigm shift,” arXiv preprint arXiv:2310.06046, 2023.

[8] X. Meng, A. Srivastava, A. Arunachalam, A. Ray, P. H. Silva, R. Psiakis, Y. Makris, and
K. Basu, “Unlocking hardware security assurance: The potential of 1lms,” arXiv preprint
arXiv:2308.11042, 2023.

[9]1 B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fixing hardware security bugs with
large language models,” arXiv preprint arXiv:2302.01215, 2023.

[10] Z.Zhang, G. Chadwick, H. McNally, Y. Zhao, and R. Mullins, “LIm4dv: Using large language
models for hardware test stimuli generation,” arXiv preprint arXiv:2310.04535, 2023.

[11] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,” IEEE
transactions on software engineering, vol. 37, no. 5, pp. 649-678, 2010.

[12] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits and a
targeted translator in fortran,” in Proc. Intl. Symp. Circuits and Systems, 1985, 06 1985.

[13] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the iscas-85 benchmarks: a case study in
reverse engineering,” IEEE Design Test of Computers, vol. 16, no. 3, pp. 72-80, 1999.



Mahesh Sadupalli


